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S P E C I F I C  F E A T U R E S  O F  T H E  P R O P A G A T I O N  OF N O N S T A T I O N A R Y  S H O C K  WAVES 

IN  A B U B B L Y  F L U I D  W I T H  A N O N - N E W T O N I A N  C A R R I E R  P H A S E  

A. A. Gubaidul l in ,  O. Sh. Rus tyumova,  and S. A. Bekishev UDC 532.529 

The wave dynamics of bubbly media with viscous and inviscid Newton;an carrier fluid has been thus far 
studied fairly well [1-4]. At the same time, wavy motions of such two-phase systems based on Newton;an fluids 
with complex rheology (polymer solutions and melts, suspensions, paraffin-base and tarry oils, etc.) have been 
studied rather poorly, despite their wide application in practice. Among those studied are some problems of 
the behavior of an individual bubble in a viscoelastic relaxing polymer fluid and the propagation of acoustic 
waves in a similar liquid with bubbles [5, 6]. These problems have been most extensively elucidated by Levitskii 
and Shul'man [6]. The problems of dynamics of nonstationary nonlinear waves still remain unstudied. 

In the present paper, we consider the specific features of the propagation of nonstationary shock waves 
in a non-Newton;an fluid with gas bubbles. In this connection, it is of interest to compare the wave behavior in 
bubbly mixtures with non-Newton;an and viscous Newton;an carrier phases and also to analyze the effect of 
the governing parameters of a two-phase mixture (initial viscosity and density of fluids, volume concentration 
of bubbles and their sizes, kind of gas, time of stress relaxation, etc.). 

We present a system of equations that describes the dynamic behavior of the indicated two-phase fluid 
with allowance for the following assumptions [1]: the bubble sizes are considerably greater than the molecular- 
kinetic ones and are considerably smaller than the distances at which the averaged or macroscopic parameters 
of the mixture change significantly; the mixture is monodisperse; a direct interaction between bubbles can be 
ignored; bubble fragmentation and coagulation and the formation of new bubbles are absent; the gas pressure 
inside bubbles is uniform; the velocities of the macroscopic phase motion coincide; and the temperature of 
the carrier fluid and its density are constant. 

The following differential equations of conservation of phase masses, the mass of an individual bubble 
and of the momentum of a mixture under the above assumptions for nonstationary plane one-dimensional 
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Here and below, p, p, and v are the density, pressure, and velocity of the mixture; p0, pi, ai, Ti, and pi are the 
real and reduced densities, volume concentration, temperature, and pressure of the ith phase; the subscripts 
1 and 2 denote the parameters of the fluid and the gas, respectively; the superscript 0 denotes the real value 
of the parameter; a is the radius of a bubble; w is the radial velocity of the bubble boundary; and n is the 
number of bubbles per unit volume. 

The equations of heat influx to the phases are of the form 

dT2 a2p2 dp ~ 
- -  -- - -  "}- nq2, T1 = const, p2cv2 dt pO dt 
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where q2 is the heat influx from the fluid per bubble. Within the framework of a two- tempera ture  scheme [1], 
the intensity of interphase heat transfer is specified by the relation 

q2 = 47ra3 A2Nu2 
2a (T1 - T2), 

where A2 is the heat-conduct ion coefficient for the gas and Nu2 is the  Nusselt number .  The  parameter  Nu2 
can be given [2] in the form 

10, Pe2 <~ 100, T1 a[,vl v~T) A2 
= Pe2 = 12(3'2 - 1 ) IT  1 7"21 t,~r) ' = ~ "  Nu2 y / ~ ,  Pe2 > 100, - p~ 

Here 72 is the adiabatic exponent ,  v~ T) is the thermal diffusivity, cv2 and %2 are the specific heats of the gas 
for a constant volume and pressure, and Pe2 is the Peclet number.  

The gas is assumed to be ideal and calorically perfect, and the fluid is assumed to be incompressible: 
P2 = p~ - 1)cv2T2, u2 = cv2T2, and pO = const. 

By definition, Pl = otlP?, P2 = ot2p O, P = Pl + P2, Oil + Or2 = 1, '~2 = (4/3)~ra3n, and p = alp1 + 
a2(P2 - 2 Z / a )  (E is the surface tension coefficient of the fluid). 

The  Rayleigh-Lamb equation of radial oscillations of a single bubble, which is generalized to the case 
of a non-Newtonian fluid, was derived in [6] and is of the following form in the spherical system of coordinates 

p0 a ~ + w 2 + Pl - P2 -4- - -  = 2 dr, w = - -  (1) 
a r d t  ' tl 

where r is the stress tensor, which is determined by the Maxwell-type rheologic equation of s tate with the 
upper convective derivative with a single relaxation t ime t,- [6-8]: 

[ . %  1 ] 
r = Vs + ~'p, r s  = 2Ose, rls + rip = rio, rp  +. tr [ dt 2 ( r p .  e + e .  ~'p) = 2r/pe. 

Here e is the strain rate tensor, the  point denotes the inner product  of the second-rank tensors (product  of the 
matrices); r/0, r/s, and r/p is the initial viscosity of the solution, the viscosity of the solvent, and the  viscosity of 
the polymer grid in the solution; and the subscripts p and s refer to the polymer and the  solvent, respectively. 

We write the equations for the normal components  7 "(tO and ~'(*'~) as follows [6]: 

T(prr)_l_tr(d'r(P rr) 2,r(prr) a2w~ a2w T(p~)_t " [d'r(p ~)  T(pcpcp) a2w ~ a2w 
\ dt + r3 ] = - 4 r i p - ~ " ,  t r [  ~ r3 / =  2r/p ~-T ; (2) 

a2w 
a2w V(s~) = 2rls r3 �9 (3) 

From (2), one can find v (rr) and v (vv) and, having subst i tuted them into the r ight-hand zide 3f Eq. (1), one 
can obtain [6] 

p~ 1 a - - ~  -4- w2 "~t" - -  -- P2 -- Pl q- (4) 

where 
S = S p + S s ;  (5) 

W 
Ss = -4r/3 --; (6) 

a 

dSp (-~r 2_~) __471, w (7) 
dt + + S p =  tr a" 

(rT) Comparison of (6) and (7) with (2) and (3) shows that  for r = a, we have Sp = ~.(rr) and Ss = rs , i.e., 
the parameters Sp and Ss have the  sense of stresses on the bubble surface in the polymer  and in the solvent, 
respectively. 
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We analyze the limiting cases of Eq. (7). Let t, be the typical time of bubble pulsations that determines 
the time scale of the process, and S,p  be the scale of stress pulsations in the polymer. We obtain the following 
estimates of the terms of Eq. (7): 

" 1�88 ~ t , '  sp ~ (8) 

] Wsl  s,p ( da I r/P 2 a p ~ t ,  as a ~ a o , w  = d-'-[ ~ , - 4 t r  ~ t r t , "  

For relaxation times smaller than the typical time of pulsations ( t r  << t,), we can ignore the terms on the 
right-hand side of Eq. (7) that  contain t ime derivatives, i.e., the first and third terms versus the second ( S p / t r ) .  

After that, only terms that  should be of the same order on both sides of Eq. (7) are left, i.e., S,p ~ r /p/ t , .  For 
stresses in the polymer, we write the following relation: 

Sp -4r/pwla, tr << t,, (9) 
which, with allowance for (6), yields S = Sp + Ss ,~ - 4 r / o w / a  and tr  << t, for stresses in the solution, i.e., is 
of the same form as that  for a Newtonian fluid with a viscosity equal to the initial viscosity of the polymer 
solution. 

For relaxation times greater than the typical time of pulsations (tr >> t ,) ,  it follows from the estimates 
(8) that we can ignore the term S p / t r  on the left-hand side, versus the first and third terms with derivatives. 
We obtain the relation 

dSp w 4 r/p w 
d--~ + 2 - -  Sp = - t r  >> t, ,  

a t r  a '  

which, with allowance for the initial conditions (t = 0: Sp = 0 and a = a0), takes the form 

] Sp = 2 -~r - 1 , t r  • t . .  (10) 

This corresponds to the nonlinear elastic restoring force: With small deviations of the bubble radius from the 
initial one, it can be reduced to the form 

Sp .~ - 4  r/p A a  t r  >> t , ,  Aa  << a0, a = a0 + Aa. (11) 
t r  ao ' 

Relations (10) and (11) show that in this limiting case, the polymer grid in the solution behaves like 
an elastic medium whose elasticity modulus G determines the scale of stress pulsations S,p  ~ r/p/ tr  = G. 

The total stress in the solution consists of the elastic component associated with the polymer and the viscous 
component associated with the solvent: 

] S = S,  + S, ~ 27-- - 1  - 4r/, --,  t ~ > t . .  
~r a 

Clearly, the elastic stress in the polymer will exert an effect if it is comparable to or greater than 
the gas elasticity in the bubble, which is determined by the pressure increment Ap2 in the Rayleigh-Lamb 
equation. Let p2/p2o = (p~ /p~  a = ao + A a ,  and P2 = P20 + Ap2. Note that  Aa << a0 and Ap2 << P20. 
Then 

Ap2 .~ - -3zeP2oAa/ao = - 4 G g A a / a o ,  G a = (3/4)~ep20. (12) 

The elastic stress in the polymer appears if either ISpl >/ lap21 or G t> G a. It is worth noting that,  as applied 
to the shock wave, we should use the equilibrium pressure value behind the wavefront p20 as the value of pe 
in (12). 

Based on the above analysis, we can assert that in both limiting cases, in shock waves the polymer 
carrier phase behaves like a Newtonian fluid with viscosities r/0 and r/s, respectively, i.e., we should expect that 
with variation in the relaxation times, shock waves have two limiting structures: a shock wave propagating as 
in a Newtonian bubbly fluid with a viscosity equal to the initial viscosity of the solution 770 (tr << t ,)  and a 
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shock wave propagating as in a Newtonian bubbly fluid with a viscosity equal to the viscosity of the solvent 
r/s (tT >> t.).  In both cases, one can model the polymer solution using a Newtonian fluid if the elasticity 
modulus of the polymer grid is smaller than the elasticity modulus of the gas in bubbles. 

Figure i shows the effect of the relaxation time tr  on the shock-wave structure and also profiles (a)-(c) 
of the dimensionless pressure at the space point z = 20 cm for the relaxation time tr = 0.001, 01, and 1 msec. 
In this case, the characteristic t ime is t ,  = 0.1 msec. It is seen that  it correlates with the t ime of cavity closing 

in the bubble to = ao~lo/PO. The mixture and wave parameters are as follows: p~ 0 = 998 kg /m 3, a0 = i mm, 
r/0 = 1.48 P a .  see, r/s = 1 m P a .  sec, a20 = 0.02, To = 293 K, p0 = 0.1 MPa, and pe = 0.3 MPa. It follows 
from Fig. 1 that  the oscillation amplitudes increase considerably with increasing relaxation time. A certain 
increase in the pulsation period is observed as well. Calculations have shown that  for relaxation times smaller 
than 0.001 msec, the pressure profiles almost coincide with each other and with the corresponding curve for 
a Newtonian carrier fluid whose viscosity is equal to the initial viscosity of the polymer solution. In the other 
limiting case of large relaxation times (tr/> 1 msec), the pressure profiles coincide with each other and with 
the curve for a bubbly  fluid in which the carrier fluid is of a constant viscosity equal to the solvent viscosity. 

Modeling of wave processes in a non-Newtonian bubbly fluid is more complicated compared with a 
Newtonian fluid. In view of this, it is important to know whether it is possible to model, in the general 
case, the behavior of a non-Newtonian carrier phase using a Newtonian fluid with a chosen effective viscosity. 
Calculations have shown that  this is impossible in the general case. In particular, even if at a certain moment 
of the evolution the wave shapes in a non-Newtonian bubbly fluid and in a specially chosen Newtonian bubbly 
fluid coincide, they are strongly different in these fluids at a later moment. 

Let us compare the behavior of shock waves during their propagation in bubbly fluids with a viscous 
Newtonian carrier phase and a non-Newtonian carrier phase. We will make such an analysis using glycerin and 
a water solution of the polymer as an example, the polymer concentration being chosen such that the initial 
viscosity of the solution coincides with that of glycerin. In Fig. 1, profiles (d) and (e) illustrate the evolution 
of the shock wave with intensity Pe = 0.15 MPa, respectively, in the water solution of the polymer (p~ 0 = 998 
kg/m 3, E = 0.073 kg/sec 2, q0 = 1.48 Pa .  see, r/~ = 1 mPa-  sec, and tr = 1 msec) and in the Newtonian fluid 
(glycerin, p~ 0 = 1260 kg /m 3 and 7/o = 1.48 Pa .  sec) with air bubbles (a0 = 1 mm, a2o = 0.02, To = 293, and 
p0 = 0.1 MPa). It is seen that the behavior of the shock wave in these cases is fundamentally different: while 
the wave is of a monotone structure in the Newtonian fluid, the wave structure in the non-Newtonian fluid 
remains oscillatory. This is associated with the fact that  during bubble oscillations in a non-Newtonian fluid 
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its effective viscosity can becomes considerably lower than the initial one. Note tha t  the velocity of the shock 
wave in the first case is smaller, and this is explained by the fact that  the glycerin density is much higher 
than that  of the polymer  solution. 

For bet ter  insight into the processes occurring upon oscillations of the bubbles in a non-Newtonian fluid, 
we analyze the dynamic  characteristics of a two-phase system. For stresses in a polymer  and in a solvent, one 
can derive, from Eqs. (6) and (7), relations for complex ampli tudes of these quantit ies in the case of harmonic 
oscillations of bubbles with a small real ampli tude Aa according to the law 

a = ao + A a e x p ( i t , t ) ,  A a  << a0. (13) 

For this purpose, we search for the stresses Sp and Ss in the form 

sk = exp ( i t ,0 ,  k = p, (14) 

For the velocity of the bubble wall w, we obtain 

w = i t , A a e x p ( i t , t ) ,  i.e., the ampli tude is w* = i t ,Aa;  (15) 

w i t , A a e x p ( i t , t )  A a  ( w ~ *  A a  
a = a0 + Aaexp ( i t , t )  ~ it, ao exp(iwt) ,  i.e., \ a ]  ~ iw ao " (16) 

Having subst i tuted (13)-(16) into (7), for the ampli tude of stresses in a polymer, we write the relation 

S~ = (- -4r lpAa/ao)( iw/(1  + iwtr)) .  (17) 

Similarly, for a solvent, we find from (6) 

S* = --4rlsit, A a / ao. (18) 

The ampli tude of the total stress is as follows: 

S* = S~ + S* = ( -4 i t ,Aa /ao ) ( r lp / (1  + it,t,.) + qs). (19) 

The real and imaginary components  S~ (S~ = S~ + iS~' i are of the form 

5~ = - 4  r/p Aa (trt ,)  2 
t,- ao 1 + (t,.t,)2; (20) 

t , A a  1 <n (21)  p=-4.p a0 

Their ratio is S;IS~'  = tTt, "~ t , . I t , ,  i.e., for t,- << t ,  ( t r t ,  << 1), the imaginary component  S;' ~ -4,vt,Aalao 
dominates, whereas, for tr >> t ,  (t,-t, >> 1), the real component  S;  ~ -4r lpAa/( t , -ao)  is dominant .  As one 
should expect,  these relations coincide with those obtained in the limiting cases considered for Sp (9) and 
(11), with the first corresponding to the viscous force and the second corresponding to the elastic one. 

By analogy with the complex viscosity for small shear oscillations of non-Newtonian fluids [9], one can 
introduce the coefficient of complex dynamic viscosity upon small oscillations of a bubble in such fluids. In 
the Rayleigh-Lamb equation, the viscosity of a Newtonian fluid r/Iv is taken into account by the term SN = 
- -4~Nw/a ,  and the corresponding complex ampli tude is S~v = - - 4 ~ 8 i t , A a / a o ,  i.e., r/N = S * N / ( - 4 i t , A a / a o ) .  

We introduce the complex dynamic viscosity for pulsations of a bubble in a non-Newtonian fluid as in 
the last relation: 

~* = ~' - i~" = S * l ( - 4 i t , A a l a o ) .  

Here r/' is the real component  of the complex viscosity, which corresponds to the viscous force, and r/" is the 
imaginary component ,  which corresponds to the elastic force. 

Note that  the velocity of longitudinal deformation of an incompressible fluid in the radial flow about 
the bubble is err = Or/Or  = - 2 v / r ,  and its complex ampli tude is e*r r=a = - - 2 i t ,Aa /ao  by virtue of (16). 

Thus, 7/* = (r(~')*/(2e*,))[r=a, i.e., such a definition of the complex viscosity is natural.  
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For a polymer fluid with one relaxation time, from (18)-(21) we have 

* t/P + t/s, t/i = Tip . t/ptrOJ 
'7 - 1 + it~,J 1 + (trW) 2 + t/s' t/ - 1 + (trm) 2" (22) 

These relations coincide with those derived for the components  of the complex dynamic  viscosity upon shear 
oscillations in a MaxwelIian fluid with one relaxation time, except for an addit ive to the real component  
corresponding to the viscosity of the solvent. 

Figure 2 shows the logarithmic dependences of the dynamic viscosity components  ,7' and ,7" on t r ~  for 
t/s/t/0 = 0.001/1.48. It is seen tha t  the real component  of the dynamic  viscosity t/' decreases monotonically 
from the initial '7o to the viscosity of the solvent t/s with increasing tr approaching the  horizontal asymptote 
77 = t/s proportionally to  1/(trw) 2. 

In the ,7' curve, the  point  D' refers to the viscosity value that  is realized during bubble oscillations in a 
polymer solution in a shock wave [profile (d) in Fig. 1]. This value is two orders of magni tude  smaller than the 
initial viscosity, which leads to the  appearance of oscillations in the shock wave propagat ing in a bubbly fluid 
with a non-Newtonian carrier phase, unlike the Newtonian fluid with viscosity '7o [see profile (e) in Fig. 1]. 

The diagram of the viscosity ,7' also allows one to interpret  the results of the calculations presented 
in Fig. 1. The  points A', B' ,  and U' in the curve for ,7' correspond to the relaxation t imes and oscillation 
frequencies of the bubbles for profiles (a)-(c) in Fig. 1. Clearly, for small relaxation t imes (point A'), a viscosity 
that  is close to the initial one is realized, and the wave structure coincides with that  in a Newtonian fluid 
with viscosity '7o. For large relaxation times (point C'),  the viscosity of the Newtonian fluid is close to that  of 
the solvent t/s, and the wave s t ructure  is the same as that  in the Newtonian fluid with viscosity t/s- To profile 
(b) in Fig. 1 corresponds the point B',  but  since this case is rheologica'Ay nonlinear and the corresponding 
effective viscosity ,7' lies between '7o and t/s, the wave profile in a mixture with a Newtonian carrier phase 
whose viscosity is the same ,7' does not coincide with profile (b). 

The imaginary component  of the complex dynamic  viscosity ,7" first increases proportionally to tr,~ 
from zero to max imum ,7" = t/p/2 for t,-~o = 1 and then decreases, approaching zero as 1/(trY).  It has no 
effect on the wave structure,  because the dynamic elasticity modulus G' = wt/" (G* =- G' + iG"  = iwt/*), 
which corresponds to it, is substantially lower than the reduced elasticity modulus of the gas in the bubbles 
Gg (12). The  latter modulus  versus try,, is shown in Fig. 2 using the imaginary component  of the reduced 
complex viscosity 

t/~(trOO) = Gg 3 w = -~72Petr/(t ,  rW) 

for tr = 0.001, 01, and 1 msec. 
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As an illustration, the points A", B", and C" in the curve for r/" of Fig. 2 pertain to the values of the 
imaginary dynamic viscosity of the fluid, which corresponds to the relaxation times and oscillation frequencies 
of the bubbles for profiles (a)-(c) in Fig. 1. The points Ag, Bg, and Cg show the corresponding values of r/~ ~ 
and, as is seen in Fig. 2, are considerably above the points A", B", and C". 

It is evident from the diagrams considered above and formula (22) that within the framework of the 
Maxwell model, the frequency dependences of the dynamic moduli (viscosities) upon radial pulsations of the 
bubbles are of the same shapes as in the periodic shear. Thus, for an approximate analysis and approximation 
of the parametrrs of bubble pulsaticns in real polymer solutions, one can use the data on the spectra of 
dynamics moduli or viscosities that were obtained by conventional methods in a periodic shear. 

We shall dwell upon the character of damping of nonlinear compression moments. The results of a 
numerical study are illustrated by compression waves whose initial shape is sinusoidal. Figure 3 shows the 
pattern of damping of such waves (pc = 0.3 MPa and the initial pulse duration is 10/~sec) in a non-Newtonian 
fluid (the solid curve for the polymer solution) and in a Newtonian one (the dashed curve for glycerin) with 
air bubbles (tr = 0.1 msec, and the remaining parameters are the same as in Fig. 1). It is seen that in the 
Newtonian bubbly fluid, the damping is less intense. This is connected with the fact that the intense wave 
damping occurs because of the high viscosity of the fluid, and the viscosity of the Newtonian fluid that is 
realized in the process becomes, as noted above, less than the initial one, i.e., less than the viscosity of glycerin. 

The study of the effect of the determining parameters of a two-phase mixture (volume concentration 
of the bubbles, their radius, kind of gas, initial viscosity of the carrier phase and its density, time of stress 
relaxation, wave intensity, etc.) on the shock-wave evolution has shown that an increase in the relaxation time 
gives rise to an increase in the amplitude of oscillations in the shock wave and to a decrease in the intensity 
of damping of the compression moment. An increase in the initial viscosity of a polymer solution leads to 
a decrease in the amplitude of oscillations in the shock wave and to a more intense damping of the impact 
moment: with a rather high initial viscosity, the wave structure becomes monotone. 

In the case of a bubbly fluid with a non-Newtonian carrier phase, the relationship between the 
dissipation that is due to interphase heat transfer and the dissipation that is due to the viscosity of a carrier 
fluid is a variable quantity and depends on the time of stress relaxation and on the initial fluid viscosity. Both 
kinds of dissipation can be a determining dissipation mechanism. Calculations performed for bubbles with 
various gases (air, carbon dioxide, helium, and sulfur hexofluorine) support this conclusion. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00650). 

R E F E R E N C E S  

1. 

2. 
3. 

4. 

5. 

6. 

7. 
8. 

9. 

A. A. Gubaidullin, A. I. Ivabdaev, R. I. Nigmatulin, and N. S. Khabeev, "Waves in a fluid with 
bubbles," Itogi Nauki Tekh., Set. Mekh. Zhidk. Gaza, 17, 160-249 (1982). 
R. I. Nigmatulin, Dynamics of Multiphase Media, Part 2, Hemisphere Publ., New York (1991). 
V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas- and Vapor-Liquid 
Media [in Russian], Energoatomizdat, Moscow (1990). 
A. A. Gubaidullin, A. I. Ivabdaev, and R. I. Nigmatulin, "Nonstationary waves in a fluid with gas 
bubbles," Dokl. Akad. Nauk SSSR, 226, No. 6, 1299-1302 (1976). 
S. P. Levitskii and A. T. Listrov, "Small oscillations of a gas-filled spherical cavity in viscoelastic 
polymer media," Prikl. Mekh. Tekh. Fiz., No. 1,137-142 (1974). 
S. P. Levitskii and Z. P. Shul'man, Dynamics and Heat and Mass Transfer of Bubbles in Polymer 
Fluids [in Russian], Nauka Tekh., Minsk (1990). 
G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill (1974). 
C. J. S. Petrie, Elongational Flows, London (1979). 
J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley and Sons, New York, (1980). 

691 


